Cycle 25, Space Weather and Propagation for 2023

Carl Luetzelschwab K9LA

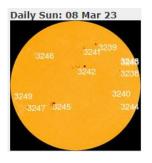
e-mail: k9la@arrl.net

website: https://k9la.us

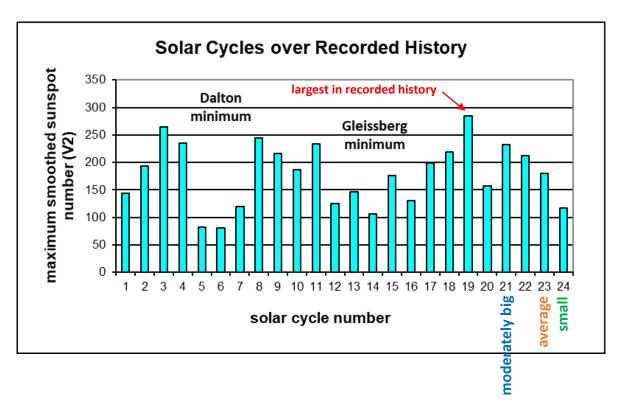
spiral aurora over Tromso, Norway December 11, 2022

Previous Presentations

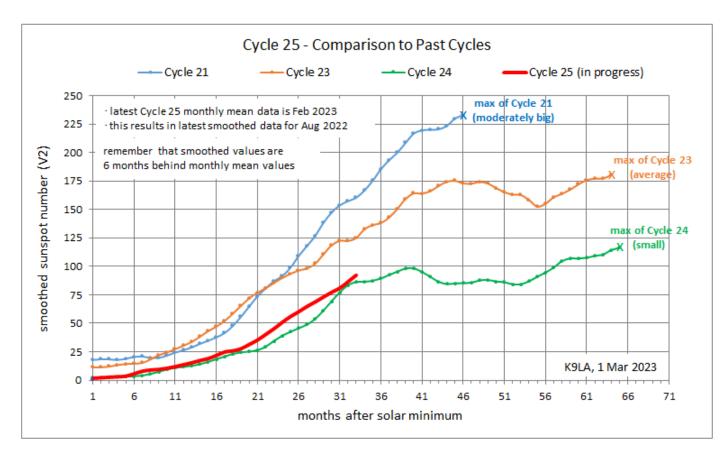
- May 2013
 - Cycle 24, disturbances to propagation, several DXpeditions
- February 2017
 - Cycle 24, Cycle 25, prediction software
- March 2023
 - Cycle 25, space weather, propagation for 2023, 10m long path


Agenda

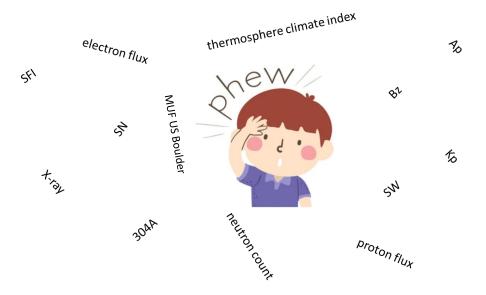
- Cycle 25
 - How is it doing?
- Space weather and propagation
 - Do all those parameters tell us what the ionosphere is doing right now?
- Propagation forecast for 2023
 - What to expect on the bands
- 10-Meter long path
 - Add some spice to your operating this spring thru fall
 - Should apply to 15m and 12m, too
- Bonus slides from a question at the meeting


Cycle 25

Historical Look at All 24 Cycles


- Cycle 1 began in 1755
 - Maunder Minimum occurred from 1645-1715 with few sunspots
- We've gone through 3 periods of 'big' solar cycles
 - Cycles 1-4, 8-11, 17-23
- We've gone through 2 periods of 'small' solar cycles
 - Cycles 5-7, 12-16
- With Cycle 24, we appear to have entered a third period of small solar cycles

Will Cycle 25 get us out of this possible third period of small cycles?


How Is Cycle 25 Doing?

- Solar minimum was in December 2019
- We currently have 33 months of smoothed sunspot number data since solar minimum
- So far, we appear to be tracking the small Cycle 24
- Thankfully we have enough EUV (extreme ultra-violet) radiation for 15m, 12m and 10m
 - EUV is the true ionizing radiation for the F2 region of the ionosphere
 - Sunspots and 10.7 cm solar flux are <u>proxies</u> for EUV

Hopefully Cycle 25 will move up to an 'average' cycle

Space Weather and Propagation

Development of the Model of the Ionosphere

- With solar data and ionosphere data, the result we desired was a correlation between a daily solar parameter (sunspots or 10.7 cm solar flux) and what the ionosphere is doing today
- That didn't happen the correlation was poor
- Why? Because there are <u>three sources of variability</u> of the ionosphere and we only understand two of them
 - Solar radiation sunspots, 10.7 cm solar flux, EUV and MUF US Boulder
 - Geomagnetic field activity K index, A index, Bz and solar wind
 - Events in the lower atmosphere coupling up to the ionosphere no parameters (yet)
- It's tough to make a daily model with data from only 2 of the 3 sources

Here's What We Ended Up With

- A monthly <u>median</u> model of the ionosphere
 - Median implies 50% probability
 - Correlated to a smoothed solar parameter (long-term average of daily data)
 - Our understanding of the ionosphere is statistical over a month's time frame
- Our propagation predictions give monthly <u>median</u> MUF and signal strength
 - There's a distribution about these median values
 - The MUF on any given day in the month could be somewhat higher to much lower than the median
 - The signal strength on any given day in the month could be somewhat higher to much lower than the median
 - Plugging in the daily 10.7 cm solar flux and the current K index won't make the predictions more accurate

Parameters That I Consider Important

- Earlier I mentioned SN, SFI, EUV, K,
 A, Bz and solar wind
- One place to get them is from the NØNBH banner at <u>www.qrz.com</u>
- Let's review SN, SFI, EUV, MUF US Boulder, K, A, Bz and solar wind
- Note 'MUF US Boulder' at the bottom

These parameters should give you a general idea of what propagation is like

```
Solar-Terrestrial Data
Provided by N0NBH
          Current Solar Image
```

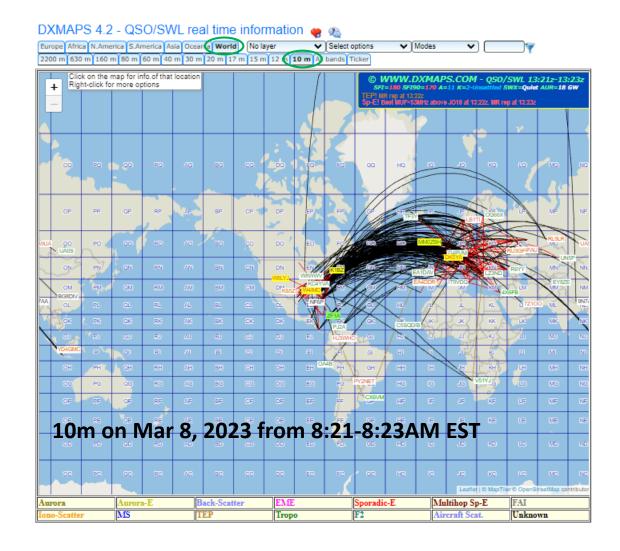
Descriptions of Those Parameters

- SFI 10.7 cm solar flux from 65 to 350
- SN sunspot number from 0 to 450
- EUV extreme ultra-violet radiation
- MUF US Boulder MUF when Boulder is midpoint of 3000 km path
- K 3-hr index of the activity of the Earth's magnetic field from 0 to 9 (logarithmic)
- A avg of the eight daily K indices from 0 to 400 (linear)
- Bz north/south component of the IMF* from +50 to -100
- SW solar wind speed average for quiet time is 400 km/s from 350 km/s to 2000 km/s

We'll focus on the parameters in green

* IMF is Interplanetary Magnetic Field (Sun's magnetic field)

general correlation

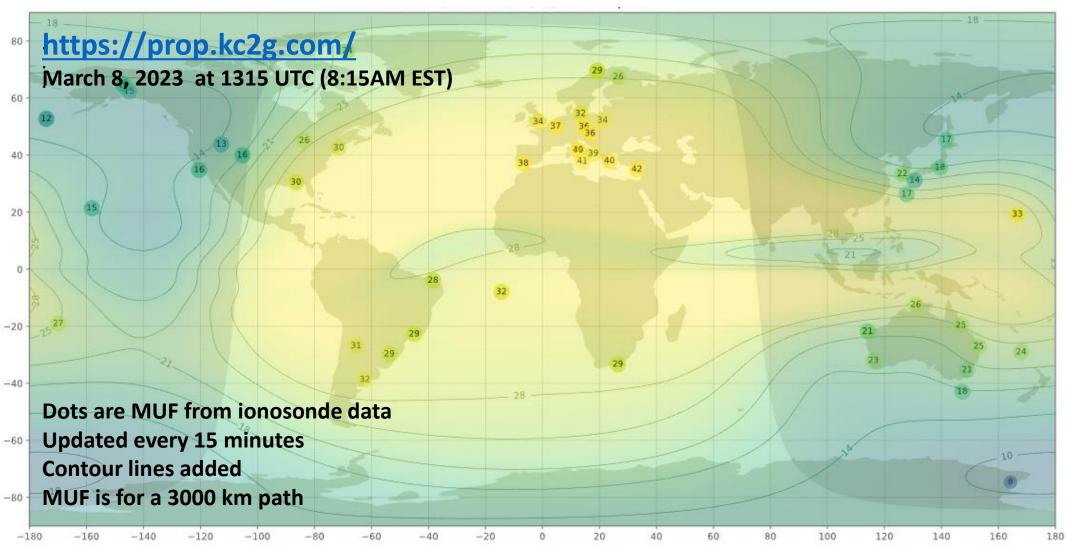

general correlation

What We Desire for SFI and K

- We need two conditions for a QSO to occur
 - Enough ionization (MUF) to refract the signal back to Earth
 - Low enough loss (absorption, FSPL, antenna gains, transmitter power, receiver MDS, ground reflection loss, local noise) to make signal readable (or detectable)
- What we desire
 - Generally K ≤ 3
 - Exception VHF types like high K indices for propagation via aurora
 - SFI for the higher HF bands (15m, 12m, 10m)
 - 15m: need smoothed SFI > 90
 - 10m: need smoothed SFI > 100
 - Even if SFI is at its minimum, 17m and lower frequencies are still open
- Where we are right now
 - Smoothed SFI ~120

What Are the Bands Doing Right Now?

- If you don't want to mess with propagation predictions or with all those space weather parameters, go to dxmaps.com
- Select a view (World, NA, . . .)
- Select a band
- Other methods
 - KC2G MUF map (next slide)
 - PSKreporter
 - WSPRnet
 - Reverse Beacon Network
 - IARU/NCDXF beacons



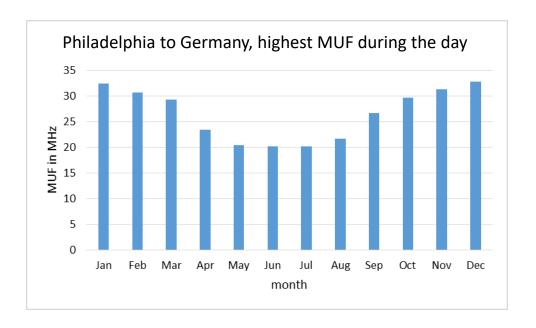
Real-Time Assessment of the Bands

for websites on previous slide

- dxmaps.com
- KC2G MUF map https://prop.kc2g.com/
- PSKreporter https://pskreporter.info/pskmap.html
- WSPRnet https://www.wsprnet.org/drupal/wsprnet/map
- Reverse Beacon Network https://www.reversebeacon.net/
- IARU/NCDXF beacons https://www.ncdxf.org/beacon/

What's the MUF Doing Right Now?

Propagation Forecast for 2023

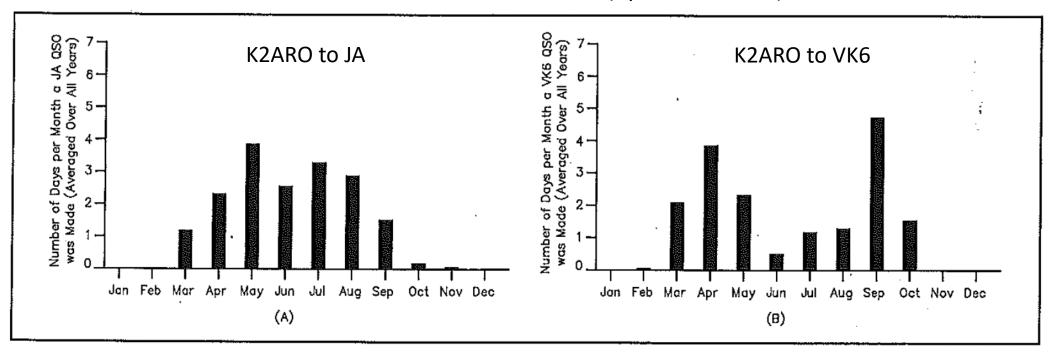

By the Bands

- 160m, 75m/80m, 60m, 40m (ionospheric absorption is critical)
 - The low bands should be good at night
 - Caveat don't know what to say about 160m should be better than it is

- 30m, 20m, 17m
 - Should be great all year

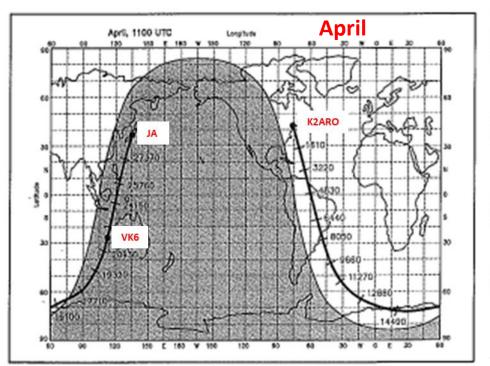
By the Bands

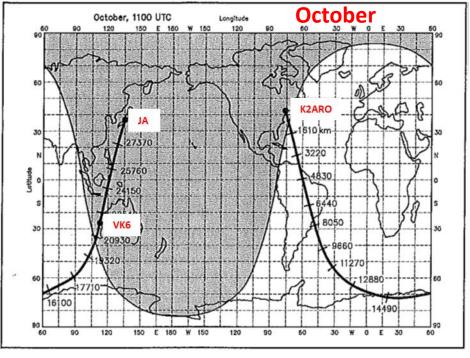
- 15m, 12m, 10m (MUF is critical)
 - Should be great for spring contests
 - Should be great for fall/winter contests
 - CQ WW DX in Oct and Nov, et al
 - IARU contest in July will suffer from degraded summer propagation (due to change in atmospheric composition)
 - But watch for sporadic E



10-Meter Long Path

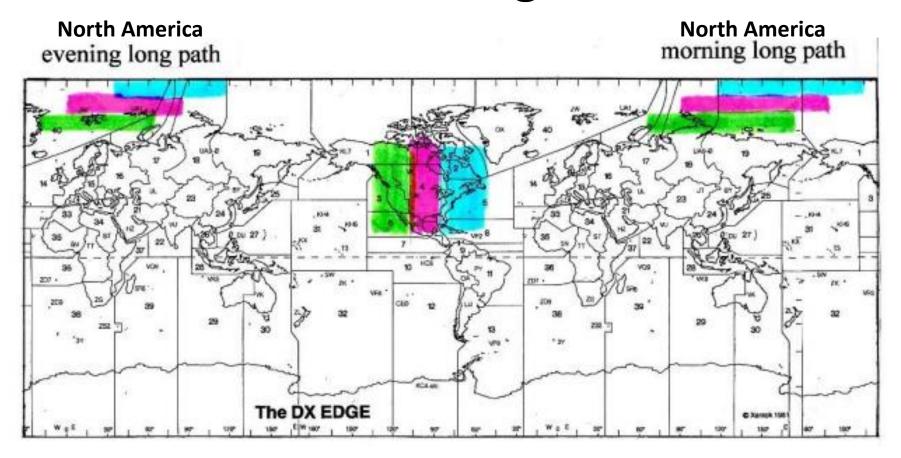
turn your antenna the other way around


K2ARO Data


Data from Jan 1979 thru Dec 1993 (Cycles 21 and 22)

- 10m long path available from March thru October
- More pronounced drop out to VK6 in the summer months
 - Suspect that VK6 is more multi-hop whereas JA can have TEP hop

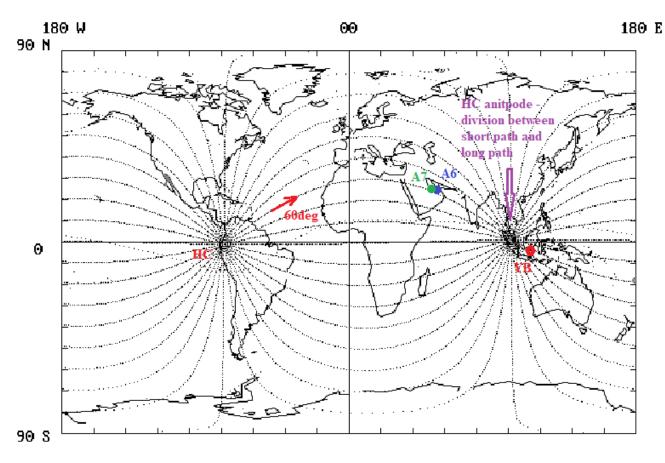
Typical Long Path



- 10m long path not necessarily a grayline path*
- Mar 22nd to Sep 22nd most productive
 - 90% of JA QSOs, 77% of VK6 QSOs
- Before Mar 21st and after Sep 23rd
 - 10% of JA QSOs, 23% of VK6 QSOs

* A grayline path is when the entire path aligns with or is very near the terminator

The Big Picture


The real question - is anyone on the other end?

For more details: https://k9la.us/A Refresher on 10m Long Path.pdf

Data from logs from K2ARO, N6AV (SK), NT5C (SK) and skeds with JH3DPB (SK)

HC to A7, A6, YB on 60° Heading on 6m

Great-Circle Paths from HC

to	short path	long path
A7	59° / 13988 km	
A6	59° / 14284 km	
YB		64° / 21288 km

- On a heading of 60°
 - A7 is short path
 - A6 is short path
 - YB is long path
- Path stays at low latitudes where the ionosphere is most robust

Summary

- Cycle 25 is awake and is in its ascent maybe up to an 'average' cycle
- Solar maximum around 2024/2025
- So far it kind of looks like another small cycle
 - We'll either confirm or refute that around 2025
- Even if it is a small cycle, now and around solar maximum will offer worldwide propagation with modest power (100W) and simple antennas (vertical or dipole) on 15m, 12m and 10m
- Should have more 6m F2 propagation this fall/winter
- The digital modes offer an advantage over CW and SSB
 - Can decode a signal farther down in the noise
 - This is a big deal on 10m and 6m where the MUF is critical
- There are tools on the internet to determine what the bands are doing right now